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preface

This semi-annual report describes our progress during the period from February
1990 to September 1990. Several technical reports and papers have been written and these
are listed at the end of each task.

There are two tasks described in this report. Each should be read independently.

That is, figure and reference numbering is consecutive only within the description of the
task. As can be expected, the progress reports are very brief and the reader should refer to
the referenced technical reports for detailed coverage. A total of sixteen technical reports
have already been submitted and two more are currently being prepared. Also, more than
18 publications to refereed journals and more than 17 conference papers have resulted from
this sponsored research.
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ABSTRACT

An extension of the two-dimensional formulation developed last year is presented

for a three dimensional body of revolution. With the introduction of a Fourier expansion of

the vector electric and magnetic fields, a coupled two-dimenional system is generated and

solved via the finite-element method. As before, an exact boundary condition is employed

to terminate the mesh and the FFT is used to evaluate the boundary integrals for low O(n)

memory demand when an iterative solution algorithm is used. Again, by virtue of the finite

element method the algorithm is applicable to structures of arbitrary material composition.

Several improvements to our two-dimensional _.lborithm are also described. These

include (1) modifications for terminating the ' sh at circular boundaries without distorting

the convolutionality of the boundary :r,.cgr,.:s, (2) the development of our own non-

proprietery mesh generation routines for two-dimensional applications, (3) the development

of preprocessors for interfacing SDRC IDEAS@ with the main algorithm, and (4) the

development of post-processing algorithms based on the public domain package GRAFIC

to generate 2D and 3D gray level and color field maps.

OBJECTIVE

The objective of this task is to develop innovative techniques and related software

for scattering by three dimensional composite structures. The proposed analysis is a hybrid

finite element-boundary integral method formulated to have an O(n) memory demand. This

low storage is achieved by employing the FFT to evaluate all boundary integrals and

resorting to an iterative solution algorithm. Particular emphasis in this task is the

generation of software applicable to airborne vehicles and the validation of these by

comparison with measured and other reference data. Because the approach is new, a step

by step development procedure has been proposed over a three-year period. During the

first year the technique was developed and implemented for two-dimensional composite

structures. Support software for the two-dimenional analysis such as pre- and post-

processor routines were developed during the second year and a formulation was also

developed and implemented for three-dimensional bodies of revolution. Finally, during the

third year, we will develop, implement, and test the method for arbitrary three dimensional

structures.



BACKGROUND

Interest in three-dimensional (3-D) methods has increased in recent years, however,

the associated demands in computation time and storage are often prohibitive for electrically

large 3-D bodies. Vector and concurrent (i.e. hypercube, connection, etc.) computers are

beginning to alleviate the fh'st of these demands, but a minimization of the storage

requirements is essential for treating large structures.

The traditional Conjugate Gradient Fast Fourier Transform (CGFFF) method [1 ]-

[4] is one such frequency domain solution approach which requires O(n) storage for the

solution of n equations. This method involves the use of FFTs whose dimension equals

that of the structure under consideration [5]-[7] and, therefore, demands excessive

computation time when used in an iterative algorithm. Also, the standard CGFFT requires

uniform rectangular gridding that unnecessarily includes the impenetrable portions of the

scatterer. With these issues in mind, a new solution approach is propsed for solving

scattering problems. The proposed method will be referred to as the Finite Element-

Conjugate Gradient Fast Fourier Transform (FE-CGFFF) method.

During last year's effort the FE-CGFFT method was developed for two-

dimensional scatterers where the finite element mesh was terminated at a rectangular box.

Inside the box boundaries, Helmholtz equation is solved via the finite element method and

the boundary constraint is obtained by an appropriate integral equation which implicitly

satisfies the radiation condition. Along the parallel sides of the box, this integral becomes a

convolution and is, therefore, amenable to evaluation via the FFT. The dimension of the

required FFF in this hybrid method is one less than the dimensionality of the structure thus,

making it attractive for 3-D simulations. Also, because it incorporates the finite element

method, the FE-CGFFT formulation remains valid regardless of the structure's geometry

and material composition.

The proposed method described in the University of Michigan Report 025921-6-T

(see also [8]) is similar to the moment method version developed by Jin [9]. Jin's method

was in turn based on work published in the early 70's by McDonald and Wexler [10] who

introduced an approach to solve unbounded field problems. The proposed method is also

similar to other methods (a few of which will be mentioned here), neither of which

provides a storage reduction comparable to the proposed FE-CGFFT method. The

unimoment method [ 11] uses finite elements inside a fictitious circular boundary and an

eigenfunction expansion to represent the field in the external region. The coefficients of the

expansion are then determined by enforcing field continuity at the finite element (FE) mesh

boundary. The coupled finite element-boundary element method [12] uses the finite
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elementmethodwithin theboundaryandtheboundaryelementmethodto providethe
additionalconstraintattheterminationof themesh.Unlike theproposedmethod,the

solutionin [12] wasaccomplishedby directmatrix inversion(asin [9]), andtheoutermesh

boundaryis notrectangularto takeadvantageof theFFT for theevaluationof theboundary

integrals.

PROGRESS

The proposed FE-CGFFT formulation was implemented last year (see Figs. 1 and

2) but as can be expected, the rectangular mesh boundary does not always lead to the most

efficient formulation, particularly when dealing with su'uc'ure_ whose outer boundary is

not rectangular. Because of this, during this year we developed and implemented a

formulation which permits mesh termination at circular (see Fig. 3) boundaries for the 2D

case with the corresponding boundary enclosure being a pillbox for the 3D case (see Fig.

4). As before, these boundaries lead to convolutional integrals and do not therefore destroy

the O(n) memory demand of the method. The FE-CGFFT formulation relating to circular

(and ogival) boundary enclosures is described in the University of Michigan report

025921-11-T (see also [ 13]) and results based on its implementation are shown in Figures

5 and 6. Fig. 5 shows bistatic scattering patterns for a coated circular cylinder with a

conductor radius of 3_., 0.05_. coating thickness and material properties er = 3-j5 and I-tr =

1.5 - j0.5. The agreement with the series solution result is excellent. In Fig. 6 a

backscatter pattern is shown for a 7q2 x 1_. conducting ogive (see Fig. 3). In comparison

with the moment method results, the agreement is again excellent. Additional results are

given in Figure 7 for a missle-like shape scatterer.

Pre- and Post-Processing _ lgorithms

The availability of pre- and post-processing algorithms is crucial for the generation

of the geometry and display of results in a graphical form. Generally, it is desirable that

these tasks be done with a graphical user interface (GUI) and possibly in an X-window

setting. Part of this year's effort was therefore devoted to the development of such

algorithms and/or interfaces for the more sophisticated commercial pre- and post-

processing packages.



For themostpart,thereexistcommercialgeometry,meshgenerationandpost-

processingpackageswhicharehighly interactiveandgraphical.Nevertheless,thereis

alwaysa needfor a suitableinterfaceordatainterpretorbetweenthecommercialpackages

andthesolutionalgorithmdescribedin theprevioussection.Thespecificpackage
interfacedwith thecomputationalalgorithmwasSDRCIDEAS@andtheselectionof this

wasbasedon its availabilityon theU-M Network,its versatility,graphicaluserinterface,
andcapabilityto generatemeshesfor 2Dand3D structures.Furthermore,anewversionof

SDRCIDEAS@,to bereleasedsoon,will supportX-windows. IDEAS wasdeveloped

for mechanicaldesignpurposes,butits geometryandfinite elementmeshgeneration
modulesareparticularlysuitedfor ourneeds.Thegeometryis definedgraphicallyusing

thearea(for 2D)or solids(for 3D)modelingcapabilityprovidedby themoddleGeomod.

Alternatively,theusermaychoosetoenterthegeometryin temlsof individualpoints,

survesegments(for 2D)or surfaces(for 3D). Once the geometry is entered, mesh areas or

regions are specified and either a mapped mesh or free mesh can be generated. Further,

individual nodes and/or elements may be inputted as desired using the CREATE command.

Once the mesh is generated, two files are created, one containing the nodes and their

corresponding coordinates, and another specifying the nodes of each element. These files

are then read by an interpretor which creates a new input file compatible with the format

required by the computational modules.

Examples of two-dimensional meshes generated with SDRC IDEAS@ were shown

in Figures 1, 2b and 7, and these are in a form suitable for the FE-CGFFT analysis. Some

three-dimensional meshes are also displayed in Figure 8 for an ogive and missile-like

structures. As seen, the 3D meshes are terminated at a cylindrical surface, tightly enclosing

the scatterer which is the intended enclosure for the proposed FE-CGFFT method. A brief

manual for geometry and mesh generation using SDRC IDEAS@ is currently being

prepared.

SDRC IDEAS@ is a rather sophisticated package and its use is certainly preferable

for 3D modeling and mesh generation. For 2D mesh generation, though, it is possible to

construct a non-proprietory package without much effort, and which is also simpler

without a serious sacrifice in versatility. Clearly, the primary reason for resorting to such

an algorithm is to permit mesh generation at sites not having a license for SDRC IDEAS@.

The specific geometry and mesh generation package developed for this purpose is based on

the algorithm described in [ 14]. Examples of free meshes generated by this package are

displayed in Figures 2a and 3. The package is interactive/menu driven and can be readily

used without much preparation. The mesh can be displayed in the Apollo screens or a

postscript file may be generated for display on other workstations. At present,



visualizationcannotbedonein anX-windowbut thiscapabilityis plannedfor earlynext

year.
A varietyof post-processingcapabilitieshavealsobeenexmployedfor agraphical

displayof theoutputdata.Theoutputiseitherin theform of echowidthplotsasa function
of observationand/orincidenceangleor in theform of graylevel field maps.Colorinstead

of graylevel field mapscanalsobegeneratedatthoseworkstationswhich supportthis

feature.Generally,all echowidthplotsaregeneratedanddisplayedusingstandard
software,andeachworkstationprovidesits ownselection.To generateandvisualizethe

graylevelandcolorfield mapsweemployedthepublicdomainpackageGRAFIC. An

exampleof agraylevelplot is shownin Figure9. This is generatedfrom apostscriptfile

andcanthusbedisplayedonothersponsormachines.

3D Algorithm for Bodies of Revolution

Before extending the presented 2D formulation to scattering by arbitrary 3D

structures, it is instructive that we first consider its implementation for a restrictive class of

3D bodies. In particular, during this year an algorithm was developed for scattering by

inhomogeneous bodies of revolution. Because of the symmetry of this structure, it is only

necessary to discretize it in a single plane slicing the structure as shown in Figure 10. A

knowledge of the fields over this cross-section is then sufficient to generate the fields

everywhere by employing a Fourier expansion in the azimuthal direction. Clearly, the

discretization can be accomplished using a 2D mesh generation routine and this is the

primary reasons for considering this class of structures. Also, the storage requirements are

comparable to that of the 2D formulation although, as expected, the computational intensity

is much greater.

The mathematical details pertaining to the BOR formulation will be presented at

sufficient detail in an upcoming technical report. Briefly, the method consists of the

following steps

1) A Fourier expansion is used to expand the fields in terms of those over a single

cross-section of the BOR.

2) The fields in the finite-element region are then formulated via the Coupled

Azimuthal Potential (CAP) method as described in [15]. This results in a banded

finite-element matrix in terms of the boundary fields.



3) Theboundaryfieldsareformulatedvia theusualStratton-Chuequationswhichare

thendiscretizedvia theboundaryelementmethod.As before,theboundaryenclosure

ischosento yieldconvolutionalintegralscomputedvia theFFT.

4) Thefinite-elementandboundary-elementsystemsarecoupledvia theboundary

fieldsandsolvedvia theCGFFTmethodmaintaininganO(n)storagerequirement,

wheren is thenumberof nodesovera singlecrosssectionof theBOR.

Presently,acodehasbeenwrittenbasedon theproposedformulationandis in the

final stagesof thevalidationprocess.

CONCLUSIONS

_o far, we have formulated and implemented the FE-CGFFT method for a variety

of 2D structures and we are now in the process of completing its implementation for BOR

structures. The method was proposed because of its versatility, accuracy and low memory

demand in comparison with other methodologies, and all of these attributes have been

demonstrated in the testing and validation process. It is therefore a promising method for

general 3D implementations to be considered in the following year.

TRANSITIONS

The validation of the 3D BOR formulation is expected to be completed by early Fall

1990. We will then begin the development and implementation of the formulation for

arbitrary 3D structures. This implementation is expected to be much more involved than

those considered earlier and the same if true for the geometry and mesh generation. It is

therefore, likely that the proposed 3D implementation may not be completed by the end of

the 3rd year. Also, because of the need to generate suitable pre-processing and post-

processing algorithms additional man-hours are required during the third year of this effort.

Most likely, a practical user-oriented validated and benchmarked code will not be available

until the fourth year. As part of this effort it would also be desirable to design and develop

a graphical user interface (GUI) compatible with the X-window platforms. The GUI is
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particularlynecessaryfor the3D analysispackage.Otherwise,theuserwouldbefaced

with a long list of subprogramswhoseinterfacingwould likely becumbersome.
TheproposedFE-CGFFTformulationemploysanexactboundaryconditionat the

terminationof theme_h.Thiseliminatesaneedto extendthemeshfar from thescatterer

leadingto a substantialsavingsin storagerequirements.However,thisstoragereduction

andsolutionaccuracyisachievedattheexpenseof computationalcomplexityandintensity.

In manycases,though,whereaccuracyis notof primaryconcern,onecouldresortto the

useof non-exact(i.e. absorbingboundaryconditions),for terminatingthemesh.This

leadsto completelysparsematricieswhichcanbesolvedr,.3reefficiently using special

purpose algorithms. In the future, it is therefore desirable to include this formulation as an

option to the user. Also, a new class of boundary conditions are currently being

investigated for terminating the mesh.
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FILE: ogive_leo_out

CREATION DATE: 7 Aug 1990
STRUCTURE: 0.5 x I _.coated conductor

ENCLOSURE: rectangle

number of nodes: 1084

numl_r of elements: 1936

nodes on pec boundary: 140

nodeson obs boundary: 92

nodes on unknowns (E-pol): 944

nodes on unknowns (H-pol): 1084
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Figure 2(c): H-polarization backscatter pattern for the coated ogive in

Fig. 2(b).



Figure 3: Example of a circular mesh enclosing an ogival cylinder.

Figure 4: Three-dimensional finite-cylinder enclosure.
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FILE: missile_out

CREATION DATE: 1 Aug 1990

STRUCTURE: missile Shal_

ENCLOSURE: rectangle

number of nodes: 636

number of elements: 908

nodes on pec boundary: 172

nodes on obs boundary: 192

nodes on unknowns (E-pol): 464

nodes on unknowns (H-pol): 636
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Figure 7: Backscatter pattems for a missile-like perfectly conducting and

coated cylinder.



d

I

; L$_t_.f, t ,t"

,-.-._.._.t';<_

:_._._..g

./_.._.._:
__: ;"_. _

_,,_ ._,' TXt

_.:_'__
-Z"_"

.'_-:_

7

.L_. . _,'_:._ , _ ...... _ ..

., ..... . ,,_ _'_-_-._-, _._

_'_,

r'-.._7_- _

' './'!;_,_:_._

._',_._

.i_,_._ , . ._...

!j:,j, ;'
_."._

Figure 8: 3D meshes for an ogive and missile-like structures.



0
cO

  iiiiiiiiiiiiit

:::::::::::::::::::::
:::::::::::::::::::::::

! I I !

0 0
cO 0
0 0

o
cO
0

q

0

T---

o

o-_

cO
o

0
o'J

o
co
o

d

0

d
t

0

"T

.=.

0
!

°_.._

0.0
©

o

0
° ....,

°_

0

©

;>

IN

0,b
._.._



'S
t

J

S

\

\

\

Figure 10: Body of revolution surrounded with a rectangular mesh.



Task Title: Analytical Solutions with Generalized
Impedance Boundary Conditions (GIBC)

Investigators: Mark A. Ricoy and John L. Volakis

Period Covered: February 1990 - September 1990



N91-14477

ABSTRACT

The diffraction by a material discontinuity in a thick dielectric/ferrite layer

is considered by modelling the layer as a distributed current sheet obey-

ing generalized sheet transition conditions (GSTCs). The sheet currents

are then formulated and solved via the standard dual integral equation ap-

proach. This yields the diffracted field in terms of unknown constants which

underscore the non-uniqueness of the GSTC current sheet representation.

The constants are d,?endent on the geometry and properties of the discon-

tinuity and ar(: determined by enforcing field continuity across the material

junction. This requires the field internal to the slab which are determined

from the external ones via analytic continuity. Results are given which

validate the solution and demonstrate the importance of the constants.

OBJECTIVE

This task involves the use of higher order boundary conditions to generate

new solutions in diffraction theory. In particular, diffraction coefficients will

be developed for dielectric/magnetic layers and metal-dielectric junctions

which are often encountered on airborne vehicles as terminations of coatings

and conformal antennas. Solutions for both polarizations will be developed

for fairly thick junctions and versatile computer codes will be written and

tested. Creeping wave diffraction coefficients will be also developed for

multilayered coated cylinders.

PROGRESS

1 Introduction

In scattering, layered materials are often modeled by equivalent sheets

satisfying simple boundary/transition conditions. In particular, impene-

trable layers are typically replaced by opaque sheets satisfying standard

impedance boundary conditions (SIBCs) [1], whereas penetrable layers are

13
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represented by transparent sheets obeying resistive or conductive type tran-

sition conditions (STCs) [2]. These simple boundary/transition conditions

relate the normal fields to their first normal derivatives through proportion-

ality factors, "impedances" in the SIBC case and "resistivities/conductivities"

in the STC case. With this modeling scheme, a discontinuity in layered ma-

terial is represented by an equivalent sheet discontinuity, whose scattering

may be treated via function theoretic techniques such as the Wiener-Hopf

method. As is well known, however, these equi_'alent sheet representations

are valid only for very thin or lossy la)ers and alternative simulations are

therefore required to model discolltinuities in low loss layers and/or layers

of appreciable thickness.

One such approach is to employ generalized impedance boundary con-

ditions (GIBCs) [31 [41 or generalized sheet transition conditions (GSTCs)

[5] [6] in place of the usual SIBCs and STCs. The GIBCs and GSTCs are

respective generalizations of SIBCs and STCs and permit a more accurate

representation of the fields at the surface of the coating or layer. Unlike

the SIBCs or STCs, GIBCs and GSTCs include second and possibly higher

order derivatives of the field components on the equivalent sheet which are

responsible for the higher accuracy of the conditions. The highest deriva-

tive kept in the condition defines their order and generally the accuracy of

the conditions is analogous to the order. As can be expected, thicker and

multilayer coatings require higher order conditions for an accurate simu-

lation and to date a plethora of GIBCs and GSTCs have been derived to

model a variety of material coatings and layers [6] [7] [S] [9] [10].

GIBC/GSTC sheets are well suited for characterizing the diffraction

by discontinuities in thick coatings or layers. In particular, they can be

employed in conjunction with the Wiener-Hopf method or dual integral

equation approach without much deviation from the procedure used in

connection with the SIBC or STC conditions. However, the resulting so-

lutions obtained in this manner are inherently non-unique [11] [12]. This

non-uniqueness cannot be removed with the usual application of the edge

condition or the enforcement of reciprocity, which has been used in the past

to generate a more physically appealing, if not a unique, solution.

Uniqueness is an obvious requirement of the physical problem and unless

resolved it would seriously undermine the usefulness of the conditions. In

the case at hand, the non-uniqueness is manifested in the form of unknown
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solution constants [12] and this simply points to the fact that additional

conditions are required for their specification.

In this paper we demonstrate that the GIBC/GSTC sheet characteriza-

tion can yield a complete solution when supplemented with certain condi-

tions at the sheet discontinuity which do not require apriori knowledge of

the edge fields. As a vehicle in presenting this solution procedure we employ

the dual integral equation method to consider the plane wave diffraction

by a discontinuous distributed sheet (see Figure l(b)). This very general

model is capable of representing material half-planes, material junctions,

and material discontinuities on grounded structures, such as those shown

in Figure 2. In addition, a distributed sheet model typically renders the

same degree of accuracy as the usual infinitely-thin sheet, but with a lower

order condition. It is, therefore, of much practical interest.

In the first part of the paper, the GSTC representation of the distributed

sheet discontinuity is used to develop dual integral equations in terms of

the unknown spectral functions proportional to the sheet currents. These

equations are then solved in the standard manner to yield expressions for

the spectral functions in terms of unknown con.- .ants, and examples are

presented where a proper choice for the constants demonstrates that they

recover known solutions. This demonstrates the validity of the presented

solution, but in general, the determination of the constants requires the

enforcement of additional constraints demanding field continuity across the

junction. The development of these conditions and their use in solving for

the constants is also presented.

2 Dual Integral Equation Formulation

Consider a distributed sheet of thickness r illuminated by the plane wave

ejk(xcos¢o+ysin¢o) _ _ Ez,i,_c, Ez polarization,Fine
= - 1. ZoHz,,,_c, Hz polarization,

(i)

as shown in Figure l(a). The excitation (1) induces reflected and trans-

mitted fields which are explicitly given by the properties of the distributed

sheet. If this sheet models a symmetric slab, then an appropriate GSTC
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representation is formally given by [10]

-_<x<oc

(__0322_ {F + } J_l (0X2_
%

-o¢ < z < oc. (2)

in which F is the total field, F + = F(x,y = +r/2), OrY _: = °F(x,y

= -1-7"/2), and OgF+ -- °--F(x,Y)[_,=+,/2"0_ Also, 7.4i) (-@) are differential

operators which operate on the field quantity in the curly brackets, and are

finite polynomials in -_ whose coefficients depend on the slab modeled

by the distributed sheet. To maintain the generality of the solution, the U_

operators are left in symbolic form and the reader is referred to [10] for their

explicit representation in terms of the material constants and thickness of

the layers comprising the modeled slab. In general, the order of/A_I (i.e.

the highest derivative present) is usually the same or one more than that

of/.4'12 and similarly the order of H_l is the same or one more than the order

of H_2. Thus, we may define the orders of the GSTCs in (2) to be

N[ 'go = maximum { order of/g;, (A2),1 + order of L/;2 (A2)}

(3)

N_ w'_ = maximum { order of U_I (A2) ,1 + order of/g_2 (A2)}

The reflected and transmitted fields may now be easily determined by

employing (2) to find

FreIl = Rle jk(xc°s¢°-vsin¢°) (4)

F,r=,_ = Tie jkl_¢°_'°+y_i"_'°) (5)

in which R1 and T1 are the reflection and transmission coefficients, respec-

tively, and are given as

T1 - eJk'_i_°2 [R;V_'_- R;g_] " (7)
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with

sin ¢ 22(c°s2 ¢o) - UJ, (cos2¢o)
sin rpdd_2 (cos 2 ¢o) + U_, (cos 2 ¢o)

¢ 1sin 05/,2 (cos 2 ¢o) - Utl (cos 2 ¢o)

sin ¢oUt2(cos2 *o) + U,', (cos_¢o)"

(s)

(9)

We remark that in (8) and (9),/d_y (cos 2 60) now represent simple polynomial

flmctions in cos 2 ¢o, since -O:r,2/k 2 = cos 2 ¢o in view of the ficld expressions

(4) and (5).

Consider now the case where the right half of tile distributed sheet

m Figure l(a) is replaced by another sheet of the same thickness, but of

different properties, as illustrated in Figure 1(1)). The GSTC representation

of this modified sheet is

for-co <x <0 and

(I0)

"121 -- 2 / {F+ - F-} + _/_12 _ _2 / {0_1 [__+ + F-I} = 0

( ( ]} = 0,

(11)

for 0 < x < _, where the superscripts 1 and 2 distinguish the left- and

right-hand sheets, respectively. Referring to our previous discussion, the

orders of the right hand side GSTCs are given as

(12)

i'V_ dd _ nlax

_Teue_,2 = max

{order of /d_, (A 2) in A,1 +order of/d_2 (A 2) in A}

{order of /d_, _A2) in A, 1 +orderof/d_22 (A 2) in A}.
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The modified right hand side sheet induces a scattered field F, in the

presence of the excitation (1), and the total field can be represented as

{Fi_c+Fr,.ft+F, y>r/2F = V,ra=+ F, y < r/2 (13)

where Fs is the unknown scattered field in the region lYl > r/2 and can be

expressed as [13] [14]

F_(x,y) = £ lYlPodd(cos_)+yP_w_(cos_)]

e-jk sin ,(l_l-, /2) e-jk, _.o_" da. (14)

where C is a contour in the complex a plane, such that )_ = cos c_ runs from

-_ to oo as shown in Figure 3. In this, the spectral functions Pode (cos a)

and P,v,,_ (cos a) are directly related to the Fourier transforms of the un-

known equivalent currents

Add = F7 --F/ (15)

J_,, = F/+ F/, (16)

via the relations

Jod_(x) = 2f7
t2_

J_,(x) = 2/2
oo

Podd ()_) e -jk_:_ (17),/f- _

Substituting (1), (4), (5), (13) and (14) into the transition conditions (11)

and (12), and introducing the transformation k = cos c_ (see Figure 3) yields

F d,_

_7;v_(£2) P_('_)e-Jk_Av/-f ,V - O, (20)
<30
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for.r <0 and

/f v/f-

2 sin ¢oe jk_'° e jk_/2 sin ¢o Zodd ( ._2 )
21)

/_>c 9Geven e_jkx, \ dA-2 (A2) P_v_n¢ A) V,_-_A 2

2 sin OoeJk_:'\°c jk_/2 _i. ,oZ_t.¢_ ( ,_2° )
(22)

for x > 0, where Ao = cOSOo and

{:]ldd (/_2) : _'/:1 (/_2) _1_ V_ -- /_2_/:2 (._2) 23)

_lven (/_2) _--_ _A_I1 (/_2) .21_ V_- )k2_12 (/_2) (24)

_c, en (/_2) -_- _21 (/_2) 21_ v/i - -- /_2_4/222 (/k2) (26)

Zodd(._2o) : [/4/111 (/_o2) _/1½ (/_o2) -- _'_12 (/_o2) /A/121 (._o2) ] (27)

Zeven (/_2o) : [_,_11 (/_o2)_,22 (,_) -_,_12 (/_o2)_.t(221 (/_)] . (_98)

Eqnations (19) with (21) and (20) with (22) form two uncoupled sets

of integral equations, sufficient to yield a solution for the unknown spectra

Podd (A) and P_,_, (A). Clearly, because of the similarity between the two

sets of equations, once a solution for Podd (A) is found, the corresponding

one for P_._,_ (A) follows by inspection.
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3 Solution of the Diffracted Field

Upon a solution of the dual integral equations (19) and (21) we obtain

j sin 6 "='- X 2 ejk./2 sin¢o

Eoee(t) + __. __, am_(X+ ao)m(t£o) n (29)• (x o)Eo.(-ao) m:, o=o

where we have assumed that Jodd(X) _" x s°dd as x ---* 0 with 0 < Soda < 1. In

this, _-7odd = int {1/2( rl 2-_'odd + No_d + 1)}, and am,_ are arbitrary constants

as yet undetermined, and correspond to the coefficients of the polynomial

resulting from the application of Liouville's theorem. The chosen symmetric

form of this polynomial is not unique but will be found most useful later in

constructing a reciprocal form for Podd()_). Also, GI+(A) are Wiener-Hopf

split function regular in the upper (+) or lower (-) half of the l-plane and

satisfy the relation

G,(A :) : G,+(A)GI_(A) (30)

(see Appendix). Similarly, G:+(1) are the corresponding split functions

associated with G2(A2). Finally, Eodd(1) is some entire function behaving

no worse than IAl( Nj""+N2°d")/2-s°_d and can take any of the forms

Zode(-,_o) or
Eodd(A) = Z&d (£) or (31)

zS_(_)

where Z+(A) are again upper and lower functions satisfying the relation

Z(_ _) : Z+(1)Z-(1) (32)

Following a similar procedure we obtain P_,_ (A) as

j sinOov_ - l_ eJkr/2sin¢°

z,.... -,_ .... -,-._ ]E_(a) + _ _ b_(a+ao)_(aao) _ (33)
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with E_.¢_ (A), N¢_,_n and bran being the counterparts of Eodd (,_), Nodcl and

am,_, respectively. Taking into account the choices (31), we may substitute

(29) and (33) into (14) and subsequently perform a steepest descent path

evaluation to obtain for 0 _ cc (all surface wave contributions are neglected

in this evaluation)

e-JkP

F(p,¢)_ [Dode (¢, ¢o) + Dcw_ (_, ¢o)] _/kp/'-----2n-
(34)

where (p, ¢) are the usual cylindrical coordinates and Dodd (¢, ¢o)+D¢v_n (cp, ¢o )

is the far zone diffraction coefficient symmetric with respect to ¢ and ¢o.
We have

Dod_ (O, ¢o )
e-jrr/4 sin dosin

27r cos ¢ + cos ¢o

dkr/2( sin ¢o+1 sin ¢1)

_;__d(cos¢) _d_ (cos¢o)_f (cos ,_,'__o_d_+(cosOo

.[2o_d(cos¢,cOS6o)+

Nod d - 1 Nod d -- 1 -- m

Z E
m=l n=O

1

• (cos ¢ +cos ¢o)m (cos ¢ cos ¢o) '_[
J

e -j'#4 sin¢o[sin¢[

2rr cos ¢ + cos ¢o

amrL

(35)

eJkr/2(sin ¢o+1 sin ¢1)

6*v*_(cos¢o)6_ (cos¢)6f _'__(cos¢o) _'_'"_+(cos¢) _+

•[2_ (cos¢, co_¢o)+
Neven-1 Neven-l-m

E E
m=l n=O

bran

•(cos¢ + cos¢o)_ (cos¢ cos¢o)"] (36)
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in which the functions 2odd,even (COS ¢,C0S¢o) are given by (see (31))

Zodd (-- COS¢ COS ¢o) or
2odd (COS ¢, COS ¢o) -_- Z_d d (COS ¢) Z_d d (COS ¢o) or (37)

z% (cos¢) z+d (cos¢o)

[ zev_ (- cos¢ cos¢o) orZe.e,, (cos ¢, cos ¢o) = Z/,e, _ (cos ¢) ZLe,, (cos 8o) or (38)

+ (cos¢) z&_ (cos¢o)e'oCl2

Because the above three choices for Zodd and 2_,_ differ only by terms of

the form (cos ¢ + cos ¢o)m (cos ¢ cos ¢o) '_, it is immaterial which of them we

choose, although one of the choices may likely lead to a more compact rep-

resentation. Nevertheless, regardless of the choice of Zodd and 2¢,¢n, one is

still faced with the determination of the unknown constants am,_ and bm,_ in

(35) and (36), repectively. These are a manifestation of the non-uniqueness

of the finite-order GSTC sheet model employed herein, and their explicit

determination requires the introduction of additional constraints pertain-

ing to the physics of the problem. Before we consider their determination

for the general case, we first look at a specific example, that of diffraction

by a thin single layer junction.

4 Diffraction by Thin Single Layer Discon-

tinuous Slabs

The diffraction coefficient given by (35) and (36) is very general and can

model a wide variety of geometries. To check its validity, display its ver-

satility, and assess the relative importance of the unknown constants, we

consider the thin material-to-material junction of thickness 2w as shown

in Figure 4. The slab will be modelled by a sheet of thickness 2(w - w,)

and with a proper choice of the material parameters this geometry can re-

duce to junctions whose diffracted field is available, thus, permitting some

validation of our solution.

If the left hand side of the slab, in addition to being thin, is also asso-

ciated with low index of refraction, it may be modeled by a low contrast

GSTC sheet. Thus, an O(w x, w 1) approximation with terms of O(w_w) ne-

glected is sufficient for the representation of the operators or polynomials

22



/2ilj. In particular, we have

(39)

where q and pl are the relative permittivity and permeability of the left

hand slab, respectively, and

lll = { [A1, E z polarizationq H: polarization " (40)

Also, when u,s = w, these are simply the transition conditions derived first

by Weinstein [5] and later by Senior and Volakis [6]. The corresponding

polynomials to be employed in (23) - (28) are given by

_/11 (-- COS (]5 COS ¢o) = 1

lg_2 (- cos ¢cos ¢o) = jk(ulW - w,)

_'4/11 (--COS¢COS(_°)= J]_ ( lUI51"1ll1 l'Us) "1- J/_ (l-7711/3-- l/'s)

H_2 (- cos ¢ cos 6o) = 1

cosecos0o

(41)

Incorporating these into (35) and (36) and setting

2odd(cos ¢, cos ¢o) = Zo_j(-- cos ¢ cos ¢o)

2_,o_(cos ¢, _os ¢o) = z_,_ (- cos ¢ cos ¢o)

(42)

(43)

yields

Dodd (¢, ¢o)
e-JTr/4 sin ¢o sin ¢

2rr cos ¢ + cos ¢o
F jkr/2(sin¢o+] sin ¢1)

H22 (-cos ¢ cos ¢o)- jk(u_u,- w_)bl_ (- cos ¢ cos ¢o)
(44)

_r_ (co_ ,; ._od_.,)M_ (cos ¢o;._.o_.,)eo_,_,_+(cos ¢) Gge (cos ¢o)
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DCv_,_ (0, Oo) = - _-_;_ si"¢°lsi"¢l eJk'/2(sin¢°+lsin¢l)
2 rr cos ¢+cos ¢o

[o, +_2 cose cos*olU_2(- cos¢ coseo)-U_ (- cos_ cos¢o)• 2
i_,:__(cosqS;,.,fm , \ , . f _ even,l \l_even, evenpv__tcoseo;-_.. )1_2+ tcos¢)_2+ (cOS¢o)

+ 2 bl0(cos ¢+cos ,_o)
J

(45)

where the split flv,,"'on M_ (cos ¢; 7) is given in the Appendix,

O_1 = jk ( wel----_l ws)
',, u 1

= -- W s

jkw
a 3 -- (el_tl -- 1)

_tl

(46)

and

odd,1 :

-j

_2 (ltl W -- Ws)

even,1 ltl -t- _/tt_ + 4_2w(£1[`l - 1)(w - ttllt's) (47)

7].2 = 2jk(w - w_ut)

with 7 °dd o_ ,_,,,_ are associated with possible surface wave poles. To complete

the definition of (44) and (45), the functions associated with the right hand

side properties of the slab (i.e. those functions with the superscript 2) must

be specified and Tables 1 and 2 provide explicit expressions for the functions

(cos ¢o)_°dd(COS¢)_°dd(COS¢o) and _2+ (cos¢) 2+u?j(-cos cos¢o),
terms. By edge condition considerations, all of the constants amn and bran

have been set to zero except bx0 appearing in the definition of D,_,n, which

is non-zero unless the right hand side slab is a PEC/PMC under an Ez/Hz

excitation (see Table 2).

By invoking image theory the diffraction coefficient for the

grounded metal- dielectric join, shown in Figure 5 is given by

D_,(cos ¢, cos ¢o) = 2D,.v,n(cos ¢, cos ¢o) (48)

24



The GSTC or GIBC model for this structure cannot dsicriminate whether
the stub at the junction is a perfect electric conductor (PEC) or perfect
magnetic conductor (PMC). This information can only be carried by the
constant bl0 and its determination must somehow involve the properties

of the junction across its thickness as discussed in a subsequent section.

However, since the diffraction coe_cient for the junction in Figure 5 is

already available [15], bl0 can be identified. Upon setting u,_ = 0, we find

bno stub = jku,_C_-_ (49)

bPoeC stub _ Jk_'_/5_-_ (50)
- .... '),,,-( .... ')]%}

This comparison clearly demonstrates the importance of the constant b_0

and by referring to Figure 6 we observe that it plays a major role in the

computation of the diffracted field.

5 Modal Decomposition of the Symmetric

Slab Fields

A general approach for determining the solution constants is to enforce

tangential field continuity accross the junction. This, of course, demands

a knowledge of the fields internal to the discontinuous slab, which are not

readily available when a GSTC simulation is employed. The Weiner-Hopf

(or dual integral equations) solution in conjunction with the GSTC pro-

vides only the fields external to the slab, and this section deals with the

determination of the internal fields from the external ones.

A modal representation of the internal field is first proposed comprised

of discrete and continuous spectral components. This representation is

compatible with that given by Shevchenko [16] whose eigenfunctions are

chosen to satisfy field continuity across all layer interfaces including the

air-dielectric interface. Consequently, the representation is valid inside and
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outside the dielectric once the coefficientsof the modal representationare
determined. This is accomplishedby recasting the Weiner-Hopf or dual
integral equation solution given earlier (see(13), (14), (29) and (33)) in a
form compatible with the proposedmodal representation, thus permitting
the identification of the modal or eigenfunction coefficients.Thesewill, of
course,be in terms of the unknown constantsappearing in the Weiner-Hopf
solution and the enforcementof field continuity accrossthe junction leads
to a linear system of equations to be solvedfor the constantsas described
in the next section.

For the symmetric slab in l£igure 2, the total field may be decomposed
into its odd and evencomponents. Specifically we write

{ F',°_d(x,y) + F',o_"(_,_) x < o
(52)

F (x, y) = F 2'°dd (x, g) + F :'_'e" (x, y) x > 0

where F °ad (x, g) = -F °ed (x, -y) and Few" (z, y) = F _v_n (x, -g). Follow-

ing [16], the odd and even fields interior and exterior to the slab may be

expanded into discrete and continuous eigenmodes as

i'V _ o

= A;; q'' A_ g° ,y e -J ....
m=l

NI ,odd
sw

E 1,odd 1,odd ...1,oddBm (_., (y) e-_'"
m=.l

"_-_O°°Cl'°dd(_)_I'°dd (A2, y) e-JkxAd/_ (53)

Ngo

E 1 even 1,even (() ,y) e-Qkx rr,
A;; @ ,_g° = ;'"'°

m----1

N1 ,even
sta

...i even

+ Z Blmevenff_lmeven (Y) e-3_xAa
m----1

.Jl_g°°cl,even(_) _l,even (A2, y) e-jkxAd_
(54)

F 2'°dd(x, y)
Ngo

A;_ @ A_ g° , y e -_ ....
m=l
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iV 2 odd

q- E Bm2'°dd_ra2"Odd(y) e-jkx_4°aa
m=|

(55)

N 9 o

m=]

N2,ev_n
sw

l.'_2,e ..... (;#2,even ...2 ......

rn=l

+ ',.v.- ,,),, (56)

where _. f Xodd evenI,--'ta m ' } < 0 and )_ = _-/32, with the branch of the square

root chosen so that Irn{_--Z-_} < 0. In (53)-(56), _oea,eve,_ are referred

to as the cross section functions corresponding to the continuous modal

fields whereas c_odd,e,,e,_ are the corresponding cross section functions for the

discrete modal fields associated with the surface waves. The cross section

function associated with the geometrical optics fields is also _oea,_ve_ eval-

uated at A = )_o, where k_°is a parameter to be determined later. As can

be observed from (53) - (56), the cross section functions specify the field

behavior in the plane normal to the slab, and hence all information per-

taining to the fields interior to the slab are embedded into these functions.

They will be chosen to satisfy the orthogonality relations (where u(g) is

y(g) or e(g) for E= or H.. polarization, respectively)

_ (_) dy = o for X# _ (57)

= o (5s)

and thus each discrete eigenmode Om (g) e -jk_'\ and each continuous eigen-

mode _ (_2 y)e-jk,:.\ must satisfy the wave equation. Additional details

pertaining to the cross section functions are given in [16].
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Exterior Cross Section Functions

To compute the cross section functions in the exterior slab region IYl >

r/2, we recall that in accordance with the slab simulation based on the

generalized sheet transition conditions (GSTCs), the external fields satisfy

the conditions (10) and (11). Because of the orthogonality relations (57)

and (58), each of the cross section functions • (A 2, y) and (I)m (y) must then

satisfy their respective odd or even GSTC. In view of this we set

+ul': (,x:)cos[k(lyl- _-/2)1_- _]}

_ I.I {uf, (_:)0,:(1,1,1.1- _-/2,a_)
Y

+u_'_(;_2)_(I, 1,I_I- TI2,_)} (59)

¢_,_(_2 y) = {u;,(_2)j sin[k(l_l-T/2)'/V:--_]vq__2

+u;2(_2)cos[k(lyl- T/2)_--_] }

= {u;, (_)_,_(1,1,1yl- T/2,_2)

+/4;2 (A 2) 422(1, 1, lyl- _/2,_:)} (60)
where qij represents the infinite order form of the q0 layer operators given

in [10]. Once each of the modes comprising (53) through (56) is substituted

into (10) or (11), the differentiation implied by -Ox_/k 2 reduces to a mul-

tiplication by _2 and the above _p,odd and k0p,_v_,_ are then readily shown

to satisfy the associated GSTC. It can also be shown that these satisfy the

orthogonality conditions (57) and (58).

A customary representation for the surface wave cross section functions

is

¢2o_ (y) _ lYle-Jk(l_,l-T/:h/,-(x,_<>"")_ ;lYl > ",'/2 (61)
Y

-Jk(lyl-_-12)ql-(_,_ .... )_02 _'_(y) = _ ;lyl > _/2 (62)
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where Arme_'_'°dd must now be chosen so that they satisfy their associated

GSTC. By substituting (61) and (62) into (10) and (11), we find that

A_ d'_ve'_ must satisfy the polynomial equations

i 1- v'°dd 2 v +//rl ([_oed] = 0 (63)

jl _,,,_,_,,_,,_, __(E_:_w_t_)+.:, (c_:_v_l') = 0 _4_
and can be also identified as the poles of the slab plane wa,'e reflection

coefficient. We further note that

q,_odd(y) = " I_1> T/2 (65)

cp_even(y) = " lYl> T/2 (66)
p even 2

implying that for a multilayer slab the cross section functions associated

with the discrete and continuous eigenmodes are of the same generic form

given by (59) and (60).

Interior Cross Section Functions

We consider now the determination of the cross section functions for the

region interior to the slab (i.e. in the region I,Jt < r/2). For simplicity let

us first assume a single layer slab of thickness r = rl, whose upper face is

located at y = -rl/2. In accordance with the preceeding, the cross section

functions associated with the external fields are given by

_vp,oaa(A:,y ) _ lYl {qu (u_,_7, rr, A2) OMl, l, lyt-r,/2, A2)
Y

+q,2(u_,_,rF, A=)On(1,1, lyl-rl/2, a2)}; I_t > rl/2 (67)

_p,even (/\2 y) = {q21 (t/_,h;lP, T_,_2) q12(X,l, lYl -- 7"1/2, /_2)

+q:: (,,7,_7,Tr,_:)0::(1,a,lyl- T1/2,_2)}; lyl > a/2 (6S)
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obtained by setting/.4_ (A 2) = qo(u_,_,r_,A _) in (59)and (60). These

are orthogonal functions and each must, therefore, satisfy the continuity

conditions

Ul

't/, 1

with similar conditions on ,I2_d'_w'_(y). It is now straightforward to deduce

that possible cross section functions satisfying (69) - (72) are of the form

,_p,odd(A2,y) _ lYlq12(U_,_p, lyl, A2) (73)
y

for I_1< _/2. Also, in view of (69) - (72), the cross section functions for

the surface wave modes remain as given in (65)-(66), provided (73) and

(74) are used in place of _odd,_v_,_.

For the general case of a multilayer slab, it is necessary that each of

the internal cross sections functions satisfy the continuity conditions at all

layer interfaces comprising the slab. In this case we find that

q2P'°dd(A2,y)
y

/_f_ (Aa) q,2(1, 1, lyl-,/2, a:)

+U_= (A2) 4=(1,1, lyl- r/2, A2);

lyl > ,/2
_:_l,p

11 ('_2) ql2(U_ ' /,_, lyl - y,-,, _)

+_'I':_(__)q=(_7,,_7,lyl- y,-,, a:);
yt > lYl > yt-x

(75)
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U_ (A 2) ,_,2(1, 1, lul - _-/2, _x_)
+Zd_'2(A2)_n(1, 1, lyl- r/2, A2);

lul > T/2
P_'_ (A:)q,2(uT, KT, lyl - y,-,, As)

+P_2P ('X2)q22(uT, t_7, IYl -- b'l-1, A2);

y, > lyl > y_-,

(76)

where

t, k2 ] Pn (-

0_. 2

[ qll( ltPm, t'ipm , Tpm --k--2-), cox 2 ql2('_tPm, t';p, Tp, -'gx--_2 )k2 )
q21( ttPm, lCP_, rPm, -- k--7-) q22(ttPm, I_p'm , 7"P' '_x2k--f-)

(77)

When these are used in (53) - (56) in conjunction with (65) and (66) we

have a complete field representation for all x.

6 Recasting of the Dual Integral Equation

Solution for a Material Junction

The expressions (53) - (56) can be used to represent the fields interior and

exterior to the slab. It remains to find the coefficients of these expansions

and to do this we must first rewrite F (x, y) in a form compatible with (53)

(56). That is, we need to identify from (13) and (14) the discrete and

continuous spectral components. The discrete portion of the spectrum is,

of course, comprised of the geometrical optics and the surface wave fields.

These can be identified by detouring the integration path in (14) as shown

in Figure 7. In particular, for x < 0 the integration path may be deformed

to one over the branch cut in the upper half of the A plane, capturing

any surface wave poles attributed to the zeros of Q_'d_d(A) and _i_"(A).

Sinfilarly, for x > 0, the integration path may be deformed to one over

the branch cut in the lower half of the A plane causing the capture of the

geometrical optics pole at A = -Ao in addition to any surface wave poles

attributed to the zeros of _odd2+ (A) and G_'_2+(A).
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Through the above deformation of the integration paths in (14) we
obtain

r:,l ,odd I
F_o°dd(x,y)+FJ:.°dd(x,y)+rdiH ix,y) x <0 (78)

r.2,odd IF°d_('r'Y) = F_o°dd(z, Y)+ F:':d_(z, Y)+ _,Jl _,Y) _ > 0

_'l'_ven(X,_) X < 0
F"_'e_(x,Y) + FJ;._Wn(x,Y) +-a,ff (79)F_._(x,y) = - go

- sw 72_2'evenF_;_w_(z,y)+F_._v_(_,y)+._,jj (z,y) x >0

where the components Fgo, F_w, Fdil] denote the geometrical optics, surface

wave, and branch cut (or diffraction) contributions to the total fields.

After some manipulation we find

A 1 ,odd _ 1 ,odd ejkx cos ¢o
flgo°dd(x,_]) -_ ""1 (/_o) (A_,_]) (80)

_2,oed ¢2,oed A2 (81f2g°dd(2:,g) = "'1 ('_o) (o,Y) ejkxc°s¢°

"l l'even kI/1'even (82)FloeVen ( x , _] ) = " J"l ( /_0 ) (/_ 2o, _] ) cJ kx c°s O°

,t_,_,_ _2,_w,_ (83)= ..,
where the A expansion coefficients are identified as

A l,odd sin _)o ejkr /2 sin *o

1 (/_o) --_" _dd(/_2o)

A2,odd sin ¢o ¢jkr/2 sin ¢o

, (-_o) = G_dd(Ao:)

(84)

(85)

A_,_n sin ¢oe jk'/2 _i_,o
1 (Ao) = (86)

G_.o-(Ao_)

A2,_.e,_ sin ¢o ejkr/2 sin 4)o, (Ao) = (87)
_o_ (_o_)

For the B coefficients, we have

Fld_°de (x, y)
N 2 ,oua [E (Ao) (-AoAI

l=l
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*_odd -- 1 "_odd-- I -- m

m=l n=O

• qdl,od d A_,odd 2 , _d e-_xx_" (88)

F';_'< (x, y) =

with

B]"°dd(Ao) =

•_r 1 ,e,_cn
_s to

1 getle_

l=l

....-l_....-,-m (_;_° _o)]
m=l n=O

- sin _o

._1 ,oddt + Ao

ejkr/2 sin 4_o

L 0.x ].\=.\l,o.a

(89)

(90)

- sin 0o

cjkr/2 sin 0o

The expressions for ,-2,odd, F2._v,,_ _ .r;_ tz, y) and ,_, (x,v) parallel those in (86) and

(87).
]2,1,odd

To obtain the C coefficient we express, dill as

j)oJ Ao_
i f .f lyl 4-_-_ (Vi=--_ + ),o)

eJ'.12(lV'TZ-_-A_o+n)e_/,l_,ln e_Sk. 1vq2D-7_n_

- _+ (._o)
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Nodd-- 1 N°dd-- 1 --m

+E E
m=l n=O

where the branch of the square root is chosen so that I" : v/1 -/32) > 0 and

5 is a vanishingly small positive number. By splitting the integral into its

positive and negative portions, and employing some identities (92) becomes

jo )r,.odd(_, V) = C_'°dd(3) 2oee - a_,,Xo
diff

•_,,o_(___y)-j_.,/i,-_e_ (93)

with the expansion coefficient C l'°dd (/3) given by

c ',o_(_3)= J- /3_v¢ - :,_o

ejkr/21x//i_-_o_odd--_,+ (vr=7)
aodd (_)aodd(,_o ) a_dd(._o ) {[U111(1 -- /32)] 2-/32 [/2:2 (1 -/32)] 2} (94)2+ 2+

r_2,odd t _ 7:_l ,even ( j_2,even
Similar expressions for rdi H ix, y), raill Ix, y) and, dill can be obtained

in a parallel manner leading to the identification of the remaining C coef-

ficient.

7 Determination of the Constants

To determine the constants am,, and bm,_, we may now enforce the tangential

field continuity conditions

(_=o-,,,)=_(x=o+,,,);m,,I<_-/_ (9_)
1 1

(y)OXF(x,,jk= 0_ - u2 (y)OxF(x,y)x=o+, Ivl < _/2 (96)tt 1
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with
f

#1,2 (v) Ez-pol

ca,2 (V) H_-pol (07)

and the subscripts 1 and 2 denoting quantities attributed to the left and

right side of the slab. Substituting (79)- (79) into (95) and (96), we obtain

• = _?l'°dd (X = O-,y )

rt,odd (X, y)]1 -Ox [r_o °ad (x,y) + r_5 °da (x,g) +. ai//
ul (_) _=o-

_ _,odd (x, v_lfj1 ox [F_°_ (x,y) + FL°_ (x,y) +. _,_
x=O+

(99)

= r'l'_"'_(x O-,v)

1 _],¢v_,_(x,y)]_:=o -u,-(-_Ox [F_f "_n (x,y) + Fs_,_'_'_ (x,y) +. dif]

- _'_'_ (x, y)] _=o+1 c_gx[F;2de,_,_(x,g)+Fi_,v_n(x,y)+._4iy f
_2(y) (101)

to be solved for all am,_ and bm,_. In particular, for an odd GSTC of O(N_ dd)

to the left and of O(N_ dd) to the right of the discontinuity, the number of

amn to be determined is equal to

N_ =
2

{ (NI..+N2..)(NI..+N2..-2]

oaa oaa / ",. oaa oaa / .

: (N 1 ..l-N2 ]28._,1
odd _ odd ] " .

8

Nldd + No_ d is even

rlNod e + N2odd is odd

(102)

To determine all a constants, (99) and/or (100) must then be enforced or

sampled at a minimum of N= points accross Ivl < 7-/2 and 0 < ¢o < r.

Similarly for an even GSTC of O(Nf "_") to the left and of O(N_ _'*) to the
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right of the discontinuity,

Nb =
2

I I 2 1 2

( N .... +N .... )(N .... +N .... -2).

1 2 28 '

(N .... "t"]_" ..... ) -1.

8

1 2
Neven + isYeven even

1 2
Neven + is oddNeuffn

Voee(_o,y)';gxF

= a_{p>(v) with

(lO3)

and thus, the b cormorants can be determined by enforcing (101) and/or

(101) at a mivim, _, of Nb points.

Substituting Ibr the fields in (99) and (100) as given in the previous

section, we obtain the equations

N_

I'_dd(Ao, y) = _ avZ_Ja(m(p),n(p),Ao,g) (104)
p=l

N_

_,oee (re(p) n(p) Ao, y) (105)= ap LOx F , ,

p=l

(n + m - 1) (m + n)
P = 2 + _ (106)

where ap

re(p) = p - _ Int

{_/l+8(p- 1)+ 1}• Int 2 (107)

n(p) = Int 2 - m(p) (108)

which are in accordance with the ordering of the am,, constants as the order

of the GSTC is increased (see Figure 8). The functions V_ dd, lzodd,O_P, Z_:dd and
z odd

O_F are readily determined from the previous analysis and are not quoted
here.

Equations similar to (104) - (105) can be obtained for the b constants

in a parallel manner.
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8 Validation of the Solution

The validity of the derived angular spectra and diffraction coefficients was

already performed to a limited degree in Section 4 of the paper. What

remains, therefore, is a validation of the procedure for computing the con-

stants am,_ and bm,_ which amounts to solving a small matrix. The valida-

tion was done by comparison with processed data from a numerical model

which consisted of a finite length slab having the prescribed discontinuity

or junction at its center. First, the transient response of this finite slab

was generated from bandlimited frequency domain data. The contribution

from the material junction was then obtained by time gating the transient

response. Numerically derived data from this procedure were found in good

agreement with the presented analytical solution. An example is shown in

Figure 9 corresponding to a thick (0.2 freespace wavelengths) material half

plane. The numerical and analytical data are clearly in good agreement,

and it is again demonstrated that the constants play a major role in the
solution.

9 Other Applications of the GIBC/GSTC

It was shown above that the GIBC can effectively model thick planar layers

of material. However, corresponding GIBC can also be derived for curved

coated surfaces (see Figure 10), and the improved accuracy of these is

particularly evident when surface wave effects are dominant. For surfaces

having relatively large radii of curvature these can be easily derived from

those of the planar surface with x and z replaced by the local tangential

variables and y by the normal one. With a second order GIBC derived in

this manner, the Mie series and GTD solutions have been found [20], [21]

and compared with the exact modal series solution for a coated cylinder.

As illustrated in Figure 11, the field given by the Mie series based on the

GIBC is in excellent agreement with the exact result even at points close to

the surface in the shadow region where a finite order boundary condition is

inadequate. In contrast, data based on the standard impedance boundary

condition (SIBC) are substantially inaccurate.

Higher order boundary conditions have advantages in numerical treat-
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ments as well. When used to simulate a coating, a GIBC eliminates the

need to sample inside the dielectric, and this is important when storage is

limited. In addition, it may be possible to use a GIBC to transfer a bound-

ary condition to a plane, thereby producing a boundary integral equation of

convolution type. In conjunction with an FFT, the equation can be solved

iteratively to reduce the storage requirement to O(n) where n is the num-

ber of unknowns. As an example, for the three d;_.iensional problem of a

cavity in a coated ground plane, a GIBC provides a simple modal as well as

a reduction in memory. If the co_ti,_:i is lossy or tapered in thickness, the

non-uniqueness due to the terminations is avoided, and the same is true for

cavities whose depth tapers to zero. Nevertheless, caution must be exer-

cised when solving the integral equation numerically. The GIBC results in

higher order derivatives applied to the Green's function, and even if some

can be transferred to the current, the increased singularity of the Green's

function makes discretization more difficult. In spite of this, integral equa-

tion methods using GIBCs of up to the third oder have been successfully

implemented [22].
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Appendix: Multiplicative Split Functions

In this appendix we consider the splitting of

(109)

as a product of two functions, one of which is free of poles, zeros and

branch cuts in the upper half of the A plane and tile other having the same

properties in the lower half of the 3, plane. Z'hat is, we seek to write G (3,2)
in the form

.G (3,2) = Q+ (A)G_ (3`) (110)

where the superscript + and - indicate an upper or lower function, respec-

tively. Noting that

NA

/AA (3`2) = _ An [1- 3,2]" (111)
n----O

NB

MB(A 2) = gB_ [1-3`2] n (112)
n=O

with NA = NB or NA = NB + 1, we may rewrite {7(3` 2 ) as

Ns

Q (3`2) = _ S,_ [1v/i-_- A_] '_ (11,3)
n=O

where N, = Max(2NA,2Ns + 1) and Sn = A,I2 if n is even and Sn =

B(n-1)/2 if n is odd. However, since we seek a multiplicative splitting of

(113), a more convenient form to represent G (3,2) is

Q(3,2) =So1-I 1+ (114)
n=l

in which % denote the zeros of the polynomial EtN_ St (_3,)t. We immedi-

ately now identify that each of the product terms in (114) can be factored

as

1 + v_- 3,2 dej M+ (3`;7).&I_ (3`;7) (115)
7
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where V_- A

I{+ (k;1/7) - M+ (A; 7) (116)

is the split function characteristic to the impedance half plane having a

constant surface impedance 1/7 [17]. With the branch choosen so tl_at

Irn(v/i - - A2) < 0, M+ (A; 3') is explicitly given by

,_I+(_;7) = M_ (-a; 7) = {

M+(_;7) S_(7) < 0

' ' >o,
M+(_;--y)

(117)

M+ (cos a; 1/,1) =
[m. (a=/2 - _ - o) m. (=/2 - _ + 0)]:

(118)

In this,

s,_(,7) > o
)t _ COS

Sin({1--11,, _7 < 0

0 = sin-'(q) with 0 _< Re(O), (119)

and _,_ (a) is the Maliuzhinets function [18] whose evaluation in algebraic

form has been given in [19].

The determination of _+ (A) is now rather trivial. By substituting (115)

into (114) we easily obtain

N_

_+(a)= _-(-_)= v/&oII M+(x;7_) (120)
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Figure 1. (a) Distributed sheet. (b) Distributed sheet discontinuity.
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Figure 2. Geometry of the material-material join.

Figure 3. Illustration of the C contour in the complex k-plane.
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Figure 10. Illustrationof athree-layercoatedcylinder.
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Figure 11. Bistatic H-polarization scattering pattern of a circular cylinder of Radius 2.93_.

coated with a layer 0.07k thick having e--4 and It=l; Comparison of fields at a distance

0.05_. away from the coatings surface.
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